Critical epidemics, random graphs, and Brownian motion with a parabolic drift

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum of Brownian motion with parabolic drift ( Extended abstract )

We study the maximum of a Brownian motion with a parabolic drift; this is a random variable that often occurs as a limit of the maximum of discrete processes whose expectations have a maximum at an interior point. This has some applications in algorithmic and data structures analysis. We give series expansions and integral formulas for the distribution and the first two moments, together with n...

متن کامل

The Maximum of Brownian Motion with Parabolic Drift

We study the maximum of a Brownian motion with a parabolic drift; this is a random variable that often occurs as a limit of the maximum of discrete processes whose expectations have a maximum at an interior point. We give new series expansions and integral formulas for the distribution and the first two moments, together with numerical values to high precision.

متن کامل

A random walk construction of Brownian motion with drift

Brownian motion with drift is constructed on the real line as the almost sure limit of a sequence of random walks. Central to the construction is an embedded varying environment branching process, which encodes the sample path behaviour of the limiting diiusion. We show how a single small time bound on the normed limit of the branching process leads to diierent small and large time bounds on th...

متن کامل

Brownian Motion with Polar Drift

Consider a strong Markov process X° that has continuous sample paths in Rd (d > 2) and the following two properties. (1) Away from the origin X° behaves like Brownian motion with a polar drift given in spherical polar coordinates by n{8)/2r. Here /i is a bounded Borel measurable function on the unit sphere in RJ, with average value Ji. (2) X° is absorbed at the origin. It is shown that X° reach...

متن کامل

Brownian Motion with Singular Drift by Richard

dXt = dWt + dAt , where Wt is d-dimensional Brownian motion with d ≥ 2 and the ith component of At is a process of bounded variation that stands in the same relationship to a measure πi as ∫ t 0 f (Xs)ds does to the measure f (x)dx. We prove weak existence and uniqueness for the above stochastic differential equation when the measures πi are members of the Kato class Kd−1. As a typical example,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2010

ISSN: 0001-8678,1475-6064

DOI: 10.1239/aap/1293113157